Hybrid models for Active Noise Reduction

M. J. Bryan mib314 @cam.ac.uk

Hybrid models for Active Noise Reduction IOP PEML Workshop

Matt J. Bryan¹, Dr Ole M. Nielsen^{1,2}, Dr Tore Butlin¹

¹Cambridge University Engineering Department ²Bose Corporation

1st October 2025

Active Noise Reduction (ANR)

M. J. Bryan mjb314 @cam.ac.uk

Introduction
Active Noise
Reduction (AN

Reduction (ANR)
Complex systems

Hybrid models

Benchmark system

Results

Comparison with

data driven metho

Conclusions

- Active Noise Reduction (ANR) describes the use of secondary sources and control schemes to reduce unwanted noise.
- The technology is mature in headphones:

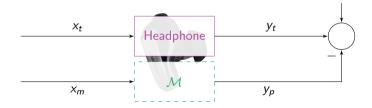


Figure 2: The modelling problem in an ANR system.

Complex systems

M. J. Bryan mjb314 @cam.ac.uk

Introduction

Reduction (ANR)

Complex systems

Hybrid models

Benchmark system

Results

Comparison with data driven method

Conclusion

- Modelling the reference signal for ANR is more challenging for complex systems.
- Coherence is significantly reduced in cases like automotive systems.
- This is due to the presence of **nonlinearity** and **multiple connections**.

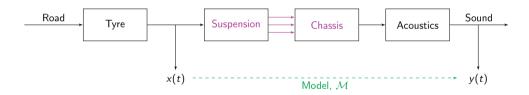


Figure 3: Block diagram of a transmission pathway.

Such a system is an ideal candidate for physics-informed machine learning (PIML) approaches: low latency and high accuracy are both essential.

Benchmark system

M. J. Bryan mib314 @cam.ac.uk

Benchmark system

- PIML methods can be used to separate linear and nonlinear system behaviours.
 - ...which can be used to focus model complexity.
 - An abstraction of the car model is used as a benchmark system to test schemes:



Figure 4: Benchmark nonlinear system with displacement input.

Case study

M. J. Bryan mjb314 @cam.ac.uk

Introduction

Active Noise

Reduction (ANR) Complex systems

Hybrid models

Benchmark system

Benchmark system

Results

Case study

lata driven method

Conclusions

• Two black box models (CNN, RNN) and a PIML model were trained on simulated time-series data (N = 2000) from the benchmark system with moderate nonlinearity:

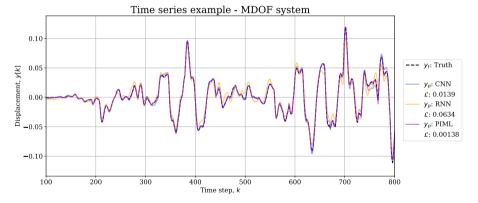


Figure 5: Time domain case study with final validation loss.

Comparison with data driven methods

M. J. Bryan mib314 @cam.ac.uk

Comparison with

data driven methods

- The benefit is most apparent in the nonlinear coherence:
 - Linear coherence between the model prediction y_p and true output y_t .
 - 'how much of the nonlinearity is captured by the model'

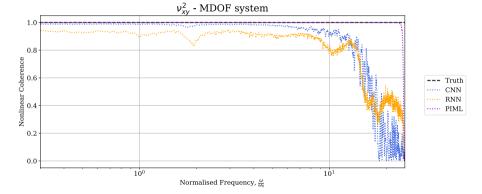


Figure 6: Performance comparison via nonlinear coherence.

Conclusions

M. J. Bryan mib314 @cam.ac.uk

Conclusions

- Hybrid models can be used to separate linear and nonlinear behaviour in an abstracted benchmark system.
- Using this physics-informed approach can improve model accuracy compared to purely data-driven methods.
 - ...provided that the form of the nonlinearity is well understood.

PIML models are a promising approach for ANR in complex systems.

Future work:

- More complex systems.
- Experimental validation.

Hybrid models for Active Noise Reduction

M. J. Bryan mib314 @cam.ac.uk

Conclusions

Hybrid models for Active Noise Reduction IOP PEML Workshop

Matt J. Bryan¹, Dr Ole M. Nielsen^{1,2}, Dr Tore Butlin¹

¹Cambridge University Engineering Department ²Bose Corporation

1st October 2025

Nonlinear coherence definition

M. J. Bryan mjb314 @cam.ac.uk

Introduct

Active Noise Reduction (ANR Complex systems

Hybrid models

Benchmark system

Results

Case study

Comparison with data driven methods

Conclusions

Linear coherence

Linear coherence =
$$\gamma_{xy}^2 = \frac{|\mathcal{S}_{xy}|^2}{\mathcal{S}_{xx}\mathcal{S}_{yy}}$$

where \mathcal{S}_{xy} is the cross-spectral density between signals x and y.

This describes 'how much of the behaviour can be described by a linear model'.

Nonlinear coherence

Nonlinear coherence =
$$\nu_{xy}^2 = \gamma_{y_t y_\rho}^2 = \frac{|\mathcal{S}_{y_t y_\rho}|^2}{\mathcal{S}_{y_t y_t} \mathcal{S}_{y_0 y_0}}$$

• which describes 'how much of the nonlinearity is captured by the model'.