ML for Active Noise Control

— Investigating machine learning architectures for nonlinear systems
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* Active Noise Control (ANC) technologies are prevalent and effective in linear systems such as headphones.
* However, ANC for automotive road noise reduction is much harder: nonlinearity in suspension systems severely
) degrades input-output coherence, limiting performance.
* Therefore, accurate models are needed to improve ANC reference signals: machine learning methods are
promising, as they can efficiently model nonlinear dynamic systems with a moderate number of parameters.
* This work compares two classical architectures using an example MDOF nonlinear system to assess their
potential for ANC in automotive applications, and as building blocks for PIML architectures.
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Road . Sound
— Tyre Suspension Chassis Acoustics Benchmark SyStem
* A linear system (chassis) driven through
a mnonlinear clement (suspension) was
used to represent the idealised car.
z(t) ; y(t) * A 3-mode MDOF nonlinear system was
Model, M simulated [a], subject to a displacement
input x(t) through a nonlinear Duffing
spring, giving output displacement y(t).
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( Physics models Data-driven models

¢ Two standard model architectures with representative structures were

¢ In a road vehicle, vibration travels through the tyre, suspension, chassis, to
trialled to assess their suitability for modelling nonlinear dynamic systems:

the cabin, resulting in undesirable acoustic emissions. Direct cabin sound
measurement is difficult, so wheel hub accelerations are used. . .

: ’ ‘ ‘ : * RNN: a Recursive Neural Network passes a hidden state as memory
between timesteps, analogous to an Infinite Impulse Response (IIR) filter.

* Previous work by De Brett et al. [1] showed that the suspension introduces

complex physics and significant nonlinearity into the transfer pathway. But . . . - e
plex pIysICs ¢ X X ty . . Dt PR ¢ CNN: a Convolutional Neural Network optimises a basis of discrete
multiple connection points to the chassis mean it cannot be ‘measured out’. . L
convolution filters, analogous to a set of Finite Impulse Responses (FIR).
¢ Both parameter-fitted physics and data-driven models were attempted, with . . . .
L pare I AP . attemp * For ANC, a small, low-latency yet high accuracy model is required, leading
Convolutional Neural Networks (CNNs) showing the most promise. . L2 . 7
\_ ) \_ to a specific set of performance metrics (including the coherence). )
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Performance Conclusions
Time Series Example, L=2000 Model Sizes . . R
s ] 1500 E— 1. For representative model structures with a similar number of parameters,
£ 2 T O Predcion AR Ao 21250 the CNN resulted in far lower normalised loss than the RNN.
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5 e A L AN g 10001 2. The RNN struggled to model the third mode compared to the CNN,
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ER V v % sl 3. Crucially, a CNN can operate in parallel, resulting in a lower model latency
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Z - o than the sequential RNN — essential for ANC on embedded hardware.
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Time index 4. However, both models have a limited range of operation. Therefore,
o Training and Validation Losses 0.08—NMSE Loss vs. Truth inclusion of physics-information into the model architectures may aid
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- - G vata performance where purely data-driven models show poor coherence.
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T~ PRI * Physics informed machine learning [2] (PIML) is a growing field of study whereby
» 0 ™ Epochs 10175 200 physics information is incorporated into data-driven models in several ways:
Transfer Function Comparison * ‘Physics-informed’ models use a physics term in their loss function.
AN . . . . .
_ models incorporate prior knowledge of the physical
* ‘Physics-guided’ model t knowledge of the ph; 1
z - . . . .
§ L N VA NN laws, for example the linearised governing equation.
2 v V\\m * ‘Physics-encoded’ models have architectures tailored to the physics
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S =80 _ p o N’Ltﬂ\ﬂ\l\!\ of the system to reproduce its known symmetries.
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N I Y ITHY * Such models have potential in nonlinear systems, particularly if they can be
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! Normalised Frequency, & ! leveraged to separate the nonlinear and linear behaviour of the system.
L Coherence Ct * For example, a model architecture could use a known linear system (the chassis
’ ) and acoustics) whilst optimising for an unknown nonlinearity (the suspension
0.8 . . .
s ] S coupling), reducing the model size and latency. )
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20 5 [a]  Time series data was simulated using a Newmark-Beta scheme, generating Vsamples of length Z subject to pulsed
S ! bandlimited white noise to provide Vindependent frames of data for model training and validation.
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