
ML for Active Noise Control
   → Investigating machine learning architectures for nonlinear systems

Motivation
• Active Noise Control (ANC) technologies are prevalent and effective in linear systems such as headphones.

• However, ANC for automotive road noise reduction is much harder: nonlinearity in suspension systems severely 
degrades input-output coherence, limiting performance. 

• Therefore, accurate models are needed to improve ANC reference signals: machine learning methods are 
promising, as they can efficiently model nonlinear dynamic systems with a moderate number of parameters.

• This work compares two classical architectures using an example MDOF nonlinear system to assess their 
potential for ANC in automotive applications, and as building blocks for PIML architectures.

[a] Time series data was simulated using a Newmark-Beta scheme, generating N samples of length L subject to pulsed 
bandlimited white noise to provide N independent frames of data for model training and validation.
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Data-driven models
• Two standard model architectures with representative structures were 

trialled to assess their suitability for modelling nonlinear dynamic systems:

• RNN: a Recursive Neural Network passes a hidden state as memory 
between timesteps, analogous to an Infinite Impulse Response (IIR) filter.

• CNN: a Convolutional Neural Network optimises a basis of discrete 
convolution filters, analogous to a set of Finite Impulse Responses (FIR).

• For ANC, a small, low-latency yet high accuracy model is required, leading 
to a specific set of performance metrics (including the coherence).

Performance Conclusions
1. For representative model structures with a similar number of parameters, 

the CNN resulted in far lower normalised loss than the RNN. 

2. The RNN struggled to model the third mode compared to the CNN,  
displaying far worse coherence across the simulated frequency range.

3. Crucially, a CNN can operate in parallel, resulting in a lower model latency 
than the sequential RNN – essential for ANC on embedded hardware.

4. However, both models have a limited range of operation. Therefore, 
inclusion of physics-information into the model architectures may aid 
performance where purely data-driven models show poor coherence.

Physics models
• In a road vehicle, vibration travels through the tyre, suspension, chassis, to 

the cabin, resulting in undesirable acoustic emissions. Direct cabin sound 
measurement is difficult, so wheel hub accelerations are used.

• Previous work by De Brett et al. [1] showed that the suspension introduces 
complex physics and significant nonlinearity into the transfer pathway. But 
multiple connection points to the chassis mean it cannot be ‘measured out’.

• Both parameter-fitted physics and data-driven models were attempted, with 
Convolutional Neural Networks (CNNs) showing the most promise.

Benchmark system
• A linear system (chassis) driven through 

a nonlinear element (suspension) was 
used to represent the idealised car.

• A 3-mode MDOF nonlinear system was 
simulated [a], subject to a displacement 
input x(t) through a nonlinear Duffing 
spring, giving output displacement y(t).
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f(x, y) = µ(y → x)3

Further work: PIML
• Physics informed machine learning [2] (PIML) is a growing field of study whereby 

physics information is incorporated into data-driven models in several ways:

• ‘Physics-informed’ models use a physics term in their loss function.

• ‘Physics-guided’ models incorporate prior knowledge of the physical 
laws, for example the linearised governing equation.

• ‘Physics-encoded’ models have architectures tailored to the physics 
of the system to reproduce its known symmetries.

• Such models have potential in nonlinear systems, particularly if they can be 
leveraged to separate the nonlinear and linear behaviour of the system.

• For example, a model architecture could use a known linear system (the chassis 
and acoustics) whilst optimising for an unknown nonlinearity (the suspension 
coupling), reducing the model size and latency.

Increasing strength


